| Torrent Total: 20,887,956 | Verified Torrents: 10,942,917 | Torrents Today: 141 |
23 OCT 2025 - We are back! If you have been following us over the last few years, you will know that the last 2 months have been rough. We website was practically not loading. Sorry for the mess. We are back though and everything should run smoothly now. New servers. Updated domains. And new owners. We invite you all to start uploading torrents again! TORRENT DETAILS Practical Machine Learning And Image Processing For Facial Recognition, Object Detect
TORRENT SUMMARY ![]()
DESCRIPTION ![]()
VISITOR COMMENTS (0 ![]() FILE LIST ![]()
RELATED DOWNLOADS ![]()
| ||||||||||||||||||||||||||||||||||











Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing.
The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools.
All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application.
What You Will Learn
Discover image-processing algorithms and their applications using Python
Explore image processing using the OpenCV library
Use TensorFlow, scikit-learn, NumPy, and other libraries
Work with machine learning and deep learning algorithms for image processing
Apply image-processing techniques to five real-time projects
