Filename Size 1. Introduction and Outline/1. Introduction and Outline.mp4 3.3 MB 1. Introduction and Outline/1. Introduction and Outline.vtt 351 B 1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp4 5.2 MB 1. Introduction and Outline/2. Where does this course fit into your deep learning studies.vtt 351 B 1. Introduction and Outline/3. How to Succeed in this Course.mp4 6.4 MB 1. Introduction and Outline/3. How to Succeed in this Course.vtt 351 B 1. Introduction and Outline/4. Where to get the code and data.mp4 26.4 MB 1. Introduction and Outline/4. Where to get the code and data.vtt 351 B 1. Introduction and Outline/5. Tensorflow or Theano - Your Choice!.mp4 18.9 MB 1. Introduction and Outline/5. Tensorflow or Theano - Your Choice!.vtt 351 B 1. Introduction and Outline/6. What are the practical applications of unsupervised deep learning.mp4 11.7 MB 1. Introduction and Outline/6. What are the practical applications of unsupervised deep learning.vtt 351 B 10. Basics Review/1. (Review) Theano Basics.mp4 93.4 MB 10. Basics Review/1. (Review) Theano Basics.vtt 6.3 KB 10. Basics Review/2. (Review) Theano Neural Network in Code.mp4 87 MB 10. Basics Review/2. (Review) Theano Neural Network in Code.vtt 3.3 KB 10. Basics Review/3. (Review) Tensorflow Basics.mp4 81.5 MB 10. Basics Review/3. (Review) Tensorflow Basics.vtt 5.1 KB 10. Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4 97.4 MB 10. Basics Review/4. (Review) Tensorflow Neural Network in Code.vtt 4.8 KB 10. Basics Review/5. (Review) Keras Basics.mp4 27.6 MB 10. Basics Review/5. (Review) Keras Basics.vtt 8 KB 10. Basics Review/6. (Review) Keras in Code pt 1.mp4 66.2 MB 10. Basics Review/6. (Review) Keras in Code pt 1.vtt 6.5 KB 10. Basics Review/7. (Review) Keras in Code pt 2.mp4 38.7 MB 10. Basics Review/7. (Review) Keras in Code pt 2.vtt 4.7 KB 11. Optional - Legacy RBM Lectures/1. (Legacy) Restricted Boltzmann Machine Theory.mp4 14.4 MB 11. Optional - Legacy RBM Lectures/1. (Legacy) Restricted Boltzmann Machine Theory.vtt 10.4 KB 11. Optional - Legacy RBM Lectures/2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4 9.4 MB 11. Optional - Legacy RBM Lectures/2. (Legacy) Deriving Conditional Probabilities from Joint Probability.vtt 5.7 KB 11. Optional - Legacy RBM Lectures/3. (Legacy) Contrastive Divergence for RBM Training.mp4 4.8 MB 11. Optional - Legacy RBM Lectures/3. (Legacy) Contrastive Divergence for RBM Training.vtt 3 KB 11. Optional - Legacy RBM Lectures/4. (Legacy) How to derive the free energy formula.mp4 10.9 MB 11. Optional - Legacy RBM Lectures/4. (Legacy) How to derive the free energy formula.vtt 5.6 KB 12. Appendix/1. What is the Appendix.mp4 5.5 MB 12. Appendix/1. What is the Appendix.vtt 3.3 KB 12. Appendix/10. Python 2 vs Python 3.mp4 7.8 MB 12. Appendix/10. Python 2 vs Python 3.vtt 5.4 KB 12. Appendix/11. Is Theano Dead.mp4 17.8 MB 12. Appendix/11. Is Theano Dead.vtt 11.3 KB 12. Appendix/12. What order should I take your courses in (part 1).mp4 29.3 MB 12. Appendix/12. What order should I take your courses in (part 1).vtt 14.1 KB 12. Appendix/13. What order should I take your courses in (part 2).mp4 37.6 MB 12. Appendix/13. What order should I take your courses in (part 2).vtt 20.2 KB 12. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4 4 MB 12. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.vtt 3 KB 12. Appendix/3. Windows-Focused Environment Setup 2018.mp4 186.4 MB 12. Appendix/3. Windows-Focused Environment Setup 2018.vtt 17.4 KB 12. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.9 MB 12. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.4 KB 12. Appendix/5. How to Code by Yourself (part 1).mp4 24.5 MB 12. Appendix/5. How to Code by Yourself (part 1).vtt 19.8 KB 12. Appendix/6. How to Code by Yourself (part 2).mp4 14.8 MB 12. Appendix/6. How to Code by Yourself (part 2).vtt 11.6 KB 12. Appendix/7. How to Succeed in this Course (Long Version).mp4 18.3 MB 12. Appendix/7. How to Succeed in this Course (Long Version).vtt 12.8 KB 12. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 39 MB 12. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.8 KB 12. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4 78.3 MB 12. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.vtt 78.3 MB 2. Principal Components Analysis/1. What does PCA do.mp4 27.8 MB 2. Principal Components Analysis/1. What does PCA do.vtt 5 KB 2. Principal Components Analysis/10. SVD (Singular Value Decomposition).mp4 42.5 MB 2. Principal Components Analysis/10. SVD (Singular Value Decomposition).vtt 10.3 KB 2. Principal Components Analysis/2. How does PCA work.mp4 50.9 MB 2. Principal Components Analysis/2. How does PCA work.vtt 12.4 KB 2. Principal Components Analysis/3. Why does PCA work (PCA derivation).mp4 51.3 MB 2. Principal Components Analysis/3. Why does PCA work (PCA derivation).vtt 351 B 2. Principal Components Analysis/4. PCA only rotates.mp4 16.4 MB 2. Principal Components Analysis/4. PCA only rotates.vtt 351 B 2. Principal Components Analysis/5. MNIST visualization, finding the optimal number of principal components.mp4 9.4 MB 2. Principal Components Analysis/5. MNIST visualization, finding the optimal number of principal components.vtt 3.3 KB 2. Principal Components Analysis/6. PCA implementation.mp4 32.1 MB 2. Principal Components Analysis/6. PCA implementation.vtt 351 B 2. Principal Components Analysis/7. PCA for NLP.mp4 16.6 MB 2. Principal Components Analysis/7. PCA for NLP.vtt 3.9 KB 2. Principal Components Analysis/8. PCA objective function.mp4 3.7 MB 2. Principal Components Analysis/8. PCA objective function.vtt 2.3 KB 2. Principal Components Analysis/9. PCA Application Naive Bayes.mp4 53.6 MB 2. Principal Components Analysis/9. PCA Application Naive Bayes.vtt 10.8 KB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/1. t-SNE Theory.mp4 7.9 MB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/1. t-SNE Theory.vtt 4.8 KB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/2. t-SNE Visualization.mp4 13 MB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/2. t-SNE Visualization.vtt 4.8 KB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/3. t-SNE on the Donut.mp4 15.1 MB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/3. t-SNE on the Donut.vtt 2.2 KB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/4. t-SNE on XOR.mp4 9.3 MB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/4. t-SNE on XOR.vtt 3.6 KB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/5. t-SNE on MNIST.mp4 4.4 MB 3. t-SNE (t-distributed Stochastic Neighbor Embedding)/5. t-SNE on MNIST.vtt 1.6 KB 4. Autoencoders/1. Autoencoders.mp4 5.8 MB 4. Autoencoders/1. Autoencoders.vtt 3.9 KB 4. Autoencoders/10. Deep Autoencoder Visualization Description.mp4 2.5 MB 4. Autoencoders/10. Deep Autoencoder Visualization Description.vtt 2 KB 4. Autoencoders/11. Deep Autoencoder Visualization in Code.mp4 27.9 MB 4. Autoencoders/11. Deep Autoencoder Visualization in Code.vtt 6.7 KB 4. Autoencoders/12. An Autoencoder in 1 Line of Code.mp4 24.9 MB 4. Autoencoders/12. An Autoencoder in 1 Line of Code.vtt 5.1 KB 4. Autoencoders/2. Denoising Autoencoders.mp4 3.4 MB