Filename Size 1. Introduction and Outline/1. Outline - what did you learn previously, and what will you learn in this course.mp4 14.4 MB 1. Introduction and Outline/1. Outline - what did you learn previously, and what will you learn in this course.vtt 9.8 KB 1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp4 6 MB 1. Introduction and Outline/2. Where does this course fit into your deep learning studies.vtt 5 KB 10. Transition to the 2nd Half of the Course/1. Transition to the 2nd Half of the Course.mp4 9.4 MB 10. Transition to the 2nd Half of the Course/1. Transition to the 2nd Half of the Course.vtt 5.8 KB 11. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.mp4 9.8 MB 11. Project Facial Expression Recognition/1. Facial Expression Recognition Project Introduction.vtt 5.7 KB 11. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.mp4 21.4 MB 11. Project Facial Expression Recognition/2. Facial Expression Recognition Problem Description.vtt 14.3 KB 11. Project Facial Expression Recognition/3. The class imbalance problem.mp4 10.1 MB 11. Project Facial Expression Recognition/3. The class imbalance problem.vtt 7.2 KB 11. Project Facial Expression Recognition/4. Utilities walkthrough.mp4 13.5 MB 11. Project Facial Expression Recognition/4. Utilities walkthrough.vtt 5.2 KB 11. Project Facial Expression Recognition/5. Class-Based ANN in Theano.mp4 44 MB 11. Project Facial Expression Recognition/5. Class-Based ANN in Theano.vtt 13.4 KB 11. Project Facial Expression Recognition/6. Class-Based ANN in TensorFlow.mp4 37.4 MB 11. Project Facial Expression Recognition/6. Class-Based ANN in TensorFlow.vtt 11.5 KB 11. Project Facial Expression Recognition/7. Facial Expression Recognition Project Summary.mp4 2.9 MB 11. Project Facial Expression Recognition/7. Facial Expression Recognition Project Summary.vtt 1.5 KB 12. Modern Regularization Techniques/1. Modern Regularization Techniques Section Introduction.mp4 4.3 MB 12. Modern Regularization Techniques/1. Modern Regularization Techniques Section Introduction.vtt 2.7 KB 12. Modern Regularization Techniques/2. Dropout Regularization.mp4 22.7 MB 12. Modern Regularization Techniques/2. Dropout Regularization.vtt 12.7 KB 12. Modern Regularization Techniques/3. Dropout Intuition.mp4 6.1 MB 12. Modern Regularization Techniques/3. Dropout Intuition.vtt 4 KB 12. Modern Regularization Techniques/4. Noise Injection.mp4 8.6 MB 12. Modern Regularization Techniques/4. Noise Injection.vtt 6.2 KB 12. Modern Regularization Techniques/5. Modern Regularization Techniques Section Summary.mp4 3.9 MB 12. Modern Regularization Techniques/5. Modern Regularization Techniques Section Summary.vtt 2.4 KB 13. Batch Normalization/1. Batch Normalization Introduction.mp4 3.5 MB 13. Batch Normalization/1. Batch Normalization Introduction.vtt 2.2 KB 13. Batch Normalization/2. Exponentially-Smoothed Averages.mp4 7.4 MB 13. Batch Normalization/2. Exponentially-Smoothed Averages.vtt 4.8 KB 13. Batch Normalization/3. Batch Normalization Theory.mp4 18.6 MB 13. Batch Normalization/3. Batch Normalization Theory.vtt 12.4 KB 13. Batch Normalization/4. Batch Normalization Tensorflow (part 1).mp4 9.4 MB 13. Batch Normalization/4. Batch Normalization Tensorflow (part 1).vtt 5.9 KB 13. Batch Normalization/5. Batch Normalization Tensorflow (part 2).mp4 14.9 MB 13. Batch Normalization/5. Batch Normalization Tensorflow (part 2).vtt 5.9 KB 13. Batch Normalization/6. Batch Normalization Theano (part 1).mp4 7.6 MB 13. Batch Normalization/6. Batch Normalization Theano (part 1).vtt 4.8 KB 13. Batch Normalization/7. Batch Normalization Theano (part 2).mp4 16.5 MB 13. Batch Normalization/7. Batch Normalization Theano (part 2).vtt 7 KB 13. Batch Normalization/8. Noise Perspective.mp4 3.1 MB 13. Batch Normalization/8. Noise Perspective.vtt 2.2 KB 13. Batch Normalization/9. Batch Normalization Summary.mp4 2.6 MB 13. Batch Normalization/9. Batch Normalization Summary.vtt 1.9 KB 14. Keras/1. Keras Discussion.mp4 11.2 MB 14. Keras/1. Keras Discussion.vtt 8 KB 14. Keras/2. Keras in Code.mp4 14.8 MB 14. Keras/2. Keras in Code.vtt 6.5 KB 14. Keras/3. Keras Functional API.mp4 38.6 MB 14. Keras/3. Keras Functional API.vtt 4.7 KB 15. PyTorch/1. PyTorch Basics.mp4 116.8 MB 15. PyTorch/1. PyTorch Basics.vtt 12.9 KB 15. PyTorch/2. PyTorch Dropout.mp4 32.7 MB 15. PyTorch/2. PyTorch Dropout.vtt 2.6 KB 15. PyTorch/3. PyTorch Batch Norm.mp4 33.9 MB 15. PyTorch/3. PyTorch Batch Norm.vtt 2.6 KB 16. PyTorch, CNTK, and MXNet/1. PyTorch, CNTK, and MXNet.mp4 1.3 MB 16. PyTorch, CNTK, and MXNet/1. PyTorch, CNTK, and MXNet.vtt 947 B 17. Appendix/1. What is the Appendix.mp4 5.5 MB 17. Appendix/1. What is the Appendix.vtt 3.3 KB 17. Appendix/10. Proof that using Jupyter Notebook is the same as not using it.mp4 78.3 MB 17. Appendix/10. Proof that using Jupyter Notebook is the same as not using it.vtt 12.2 KB 17. Appendix/11. How to Uncompress a .tar.gz file.mp4 5.4 MB 17. Appendix/11. How to Uncompress a .tar.gz file.vtt 3.7 KB 17. Appendix/12. Python 2 vs Python 3.mp4 7.8 MB 17. Appendix/12. Python 2 vs Python 3.vtt 5.4 KB 17. Appendix/13. What order should I take your courses in (part 1).mp4 29.3 MB 17. Appendix/13. What order should I take your courses in (part 1).vtt 14.1 KB 17. Appendix/14. What order should I take your courses in (part 2).mp4 37.6 MB 17. Appendix/14. What order should I take your courses in (part 2).vtt 20.2 KB 17. Appendix/2. What's the difference between neural networks and deep learning.mp4 45.1 MB 17. Appendix/2. What's the difference between neural networks and deep learning.vtt 8.9 KB 17. Appendix/3. Manually Choosing Learning Rate and Regularization Penalty.mp4 7.8 MB 17. Appendix/3. Manually Choosing Learning Rate and Regularization Penalty.vtt 5 KB 17. Appendix/4. Windows-Focused Environment Setup 2018.mp4 186.3 MB 17. Appendix/4. Windows-Focused Environment Setup 2018.vtt 17.4 KB 17. Appendix/5. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4 43.9 MB 17. Appendix/5. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt 12.4 KB 17. Appendix/6. How to Succeed in this Course (Long Version).mp4 13 MB 17. Appendix/6. How to Succeed in this Course (Long Version).vtt 12.9 KB 17. Appendix/7. How to Code by Yourself (part 1).mp4 24.5 MB 17. Appendix/7. How to Code by Yourself (part 1).vtt 19.8 KB 17. Appendix/8. How to Code by Yourself (part 2).mp4 14.8 MB 17. Appendix/8. How to Code by Yourself (part 2).vtt 11.6 KB 17. Appendix/9. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4 39 MB 17. Appendix/9. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt 27.8 KB 2. Review/1. Review of Basic Concepts.mp4 23.4 MB 2. Review/1. Review of Basic Concepts.vtt 16 KB 2. Review/2. Where to get the MNIST dataset and Establishing a Linear Benchmark.mp4 11.1 MB 2. Review/2. Where to get the MNIST dataset and Establishing a Linear Benchmark.vtt 4.2 KB 3. Gradient Descent Full vs Batch vs Stochastic/1. What are full, batch, and stochastic gradient descent.mp4 5.8 MB 3. Gradient Descent Full vs Batch vs Stochastic/1. What are full, batch, and stochastic gradient descent.vtt 3.5 KB 3. Gradient Descent Full vs Batch vs Stochastic/2. Full vs Batch vs Stochastic Gradient Descent in code.mp4 14 MB 3. Gradient Descent Full vs Batch vs Stochastic/2. Full vs Batch vs Stochastic Gradient Descent in code.vtt 5.8 KB 4. Momentum and adaptive learning rates/1. Using Momentum to Speed Up Training.mp4 10.7 MB