23 OCT 2025 - We are back! If you have been following us over the last few years, you will know that the last 2 months have been rough. We website was practically not loading. Sorry for the mess. We are back though and everything should run smoothly now. New servers. Updated domains. And new owners. We invite you all to start uploading torrents again!
TORRENT DETAILS
Supervised Learning With Python
TORRENT SUMMARY
Status:
All the torrents in this section have been verified by our verification system
English | PDF,EPUB | 2020 | 387 Pages | ISBN : 1484261550 | 21 MB
Gain a thorough understanding of supervised learning algorithms by developing use cases with Python. You will study supervised learning concepts, Python code, datasets, best practices, resolution of common issues and pitfalls, and practical knowledge of implementing algorithms for structured as well as text and images datasets.
You’ll start with an introduction to machine learning, highlighting the differences between supervised, semi-supervised and unsupervised learning. In the following chapters you’ll study regression and classification problems, mathematics behind them, algorithms like Linear Regression, Logistic Regression, Decision Tree, KNN, Naïve Bayes, and advanced algorithms like Random Forest, SVM, Gradient Boosting and Neural Networks. Python implementation is provided for all the algorithms. You’ll conclude with an end-to-end model development process including deployment and maintenance of the model.
After reading Supervised Learning with Python you’ll have a broad understanding of supervised learning and its practical implementation, and be able to run the code and extend it in an innovative manner.
You will:
Review the fundamental building blocks and concepts of supervised learning using Python
Develop supervised learning solutions for structured data as well as text and images
Solve issues around overfitting, feature engineering, data cleansing, and cross-validation for building best fit models
Understand the end-to-end model cycle from business problem definition to model deployment and model maintenance
Avoid the common pitfalls and adhere to best practices while creating a supervised learning model using Python